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Lecture  10 

Terrestrial infrared radiative processes. Part 3: 

Absorption band models. Curtis-Godson Approximation.  
Objectives: 

1. Concept of the equivalent width. Limits of the strong and weak lines. 

2. Absorption-band models: Regular (Elsasser) band model and Statistical (Goody) band 

model. 

3. Curtis-Godson Approximation for inhomogeneous path. 

 

Required reading:  

L02: 4.4 

Additional/Advanced reading:  

G&Y: 4.5;4.6 

 

1. Concept of the equivalent width. Limits of the strong and weak lines.  
First, let’s consider a homogeneous atmospheric layer (i.e., the spectral absorption 

coefficient kνννν does not depend on path length).  

Recall Lecture 8 where we have defined the spectral transmission function for a band 

of a width ∆ν∆ν∆ν∆ν as 
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Equivalent width is defined as 
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where W is in units of wavenumber (cm-1). 
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• The equivalent width is the width of a fully absorbing  (A=1) rectangular-shape 

line. 

 
Figure 10.1 Schematic illustration of the equivalent width. The dotted rectangular area is 

equal to the hatched area and represents the total energy absorbed in the line. 

 

 

 

� Equivalent width of Lorentz profile 

Using kν = S f(ν – ν0) and  the Lorentz profile of  a line, we have  
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This integral can be expressed in term of the Ladendurg and Reiche function, L(x), as  
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where x = Su/2πα,  

S is the line intensity, and u is the absorber amount. 
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NOTE: The Ladendurg and Reiche function L(x) in Eq.[10.3] is given by the modified 

Bessel functions of the first kind of order n: )]()()[exp()( 10 xIxIxxxL +−= , where 
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For small x: L(x) is linear with its asymptotic expansion: L(x)= x[1-…] 

For large x: L(x) is proportional to a square root of x: L(x) = (2x/π)1/2[1-…] 

 

 

 

Case of weak line absorption: either kν or u is small =>      kννννu <<1 
Using the asymptotic of L(x) for small x, we have 
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Case of strong line absorption: Su/παπαπαπα >>1 
Using the asymptotic of L(x) for large x, we have 
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2. Absorption band models.  
Band is a spectral interval of a width ∆ν∆ν∆ν∆ν which is small enough to utilize a mean value of 

the Plank function )(TB ν , but large enough so it consists of several absorption lines. 

 

• Absorption band models are introduced to simplify the computation of the 

spectral transmittance. Some generally available radiative transfer codes (such as 

MODTRAN) use band models. 

 

NOTE: MODTRAN is a moderate resolution radiative transfer code, which has “fixed-
wavenumber” sampling of 1 cm-1 and a nominal resolution of 2 cm-1.  See 
A. Berk, G.P. Anderson, P.K. Acharya, J.H. Chetwynd , L.S. Bernstein , E.P. Shettle , 
M.W. Matthew , and S.M. Adler-Golden, MODTRAN4 USER’S MANUAL. Air Force 
Research Laboratory. 2000.  

 
 

Let’s consider a band with several lines. Two main cases can be identified:                  

1) lines have regular positions  

2) lines have random positions.  

 

Two main types of band models: regular band model and random band models. 

 

Regular Elsasser band model consists of an infinite array of Lorentz lines of equal 

intensity, spaced at equal intervals. 

 

Example: This type of bands is similar to P and Q branches of linear molecules. For 

example, the spectrum of N2O in 7.78 µm band; the spectrum of CO2 in 15 µm band. 

 

The absorption coefficient of the Elsasser bands is 
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where δ is the line spacing (i.e., the distance in wavenumber domain (cm-1) between the 

centers of two nearest lines). 
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Using Eq.[10.6} one can calculate the spectral absorptance as (see derivation in L02 

pp139-141)  

                                          









=

δ
απ

ν
uSerfA                                   [10.7] 

where ∫ −=
x

dxxxerf
0

2 )exp(2)(
π

. Values of erf(x) are available from standard 

mathematical tables.  

 

 

Principle of statistical (random) models: 

Many spectral bands have random line positions. To approximate this type of bands, 

various statistical models have been developed. 

 

Example: H2O 6.3 µm vibrational-rotational band and H2O rotational band are 

characterized by random line positions. 

 

Assumptions:   n randomly spaced lines with the mean distance δ, so that  ∆ν= nδ ;  lines 

are independent and have identical shapes, probability density of strength of i’th  line is 

p(Si). Different p(S) give different models, for instance, Goody and Malkmus.  

 

Strategy:  derive mean transmission by multiplying transmission of each line at particular 

νννν, and also integrating over probability distributions of line positions ννννi and line strength 

Si  for each line.  
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NOTE: Above equation uses that if lines in a band are uncorrelated, the multiplication 

law (see Lecture 8) works for average transmittance: 

2,1,2,1, ννν TTT =  

 

Since in the above equation all integral alike, we have 

       
n

n

dSuSfSpd

dSuSfSpdT

})(exp(1)[(11{

})(exp()(
)(

1{

0

0

νν
ν

νν
ν

ν

ν
ν

−−
∆

−=

=−
∆

=

∫∫

∫∫
∞

∆

∞

∆

                [10.8] 

 

 

The mean equivalent width may be defined as  
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Recalling that ∆ν= nδ ,  Eq.[10.8] can be rewritten in terms of the mean equivalent 

width giving the mean transmission as  
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NOTE:  Single line transmission is 1-W/∆ν∆ν∆ν∆ν, but for many random lines it is exponential 

in the mean equivalent width. 
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Statistical (Goody) band model: 

Consider a band consisting of randomly distributed Lorentz lines. 

Assuming that the probability distribution of intensities is the Poisson distribution 
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where the S in the mean intensity.  
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For the Lorentz profile with the mean half-width α, the spectral transmittance can be 

expressed as 
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Thus, Eq.[10.13] gives the mean spectral transmittance for the Goody random model as a 

function of path length, u,  and two parameters  
δ
S

and 
απ
S . 

 

 

 

Malkmus model: (has a higher probability of weak lines) 

assumes that the probability distribution of intensities is  
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and, for a Lorentz line shape, the mean transmittance is  
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Weak line limit:  

For 1<<
πα

uS
, Eq.[10.13] gives  
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Strong line limit:  
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3. Curtis-Godson Approximation for inhomogeneous path. 
All discussion above was for homogeneous path because band parameters are for one  

pressure and temperature. In real atmosphere of varying T and P some adjustments of the 

band models are needed to account for inhomogeneous path when 
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Strategy: reduce the radiative transfer problem to that of homogeneous path with some 

sort of averaged values of u*, T* and p*, so that optical depth can be computed 

accurately.  

 

One-parameter scaling approximation: 

Find an equivalent path u* at fixed reference Tr and pr that results in the band  model 

having the correct transmission.   

Match optical depth for line wings (centers saturated):  
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Re-writing the half-width, α, as  
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and thus  
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Two-parameter scaling approximation (Curtis-Godson approximation): 

More accurate band transmission is obtained with the two-parameter approximation. 

Want to find optical depth as  
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Using Lorentz profile, we have  
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and, thus, two-adjusted parameter S~ and α~ . 

They can be introduced as  
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